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Abstract
We analyze the stability of recurrent networks,
specifically, reservoir computing models during
training by evaluating the eigenvalue spectra of
the reservoir dynamics. To circumvent the insta-
bility arising in examining a closed loop reservoir
system with feedback, we propose to break the
closed loop system. Essentially, we unroll the
reservoir dynamics over time while incorporat-
ing the feedback effects that preserve the over-
all temporal integrity of the system. We eval-
uate our methodology for fixed point and time
varying targets with least squares regression and
FORCE training (Sussillo & Abbott, 2009), re-
spectively. Our analysis establishes eigenvalue
spectra (which is, shrinking of spectral circle as
training progresses) as a valid and effective met-
ric to gauge the convergence of training as well
as the convergence of the chaotic activity of the
reservoir toward stable states.

1. Introduction
Recurrent neural networks, specifically reservoir comput-
ing models, are studied in the context of neuroscience and
neuromorphic computing to model and process inputs with
spatio-temporal dynamics. A reservoir model is a randomly
connected system of neurons that creates a complex, high di-
mensional dynamic representation of an input. The patterns
of activity generated by the reservoir are then processed by
a layer of linear readout neurons to perform pattern recogni-
tion tasks (Fig. 1). The intrinsic recurrence of such systems
gives them a sort of ‘memory’ to store patterns of corre-
lated activity in a sequential input. Reservoirs also exhibit
‘chaos’ on account of the recurrence, that presents a chal-
lenge in theoretical understanding and exploiting the non-
linear dynamics of such networks. However, understanding
the dynamics of these networks during training has large
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Figure 1. Typical Reservoir computing architecture consisting of
an input connected to a reservoir of randomly connected neurons.
The reservoir activity r(t) is fed into the readout/output neuron,
that again feeds back the output activity into the reservoir through
weights wFB . The remaining notations of the figure are explained
and denoted in Eqn. (1).

implications toward advancing the reservoir computing field
for broader range of artificial intelligence and computational
neuroscience applications.

Most of the existing literature tend to bypass ‘chaos’ and the-
orize the dynamics of reservoir models under designed con-
trol settings (Sompolinsky et al., 1988; Rajan et al., 2010b;
Stern et al., 2014; Sussillo & Barak, 2013) for random condi-
tions. Rivkind et al. (Rivkind & Barak, 2017) demonstrated
the first analysis on the effect of training on reservoir dynam-
ics. However, the analysis was restricted to trained models
for fixed point targets. In this work, we present a study to un-
derstand the dynamics of reservoir models during training.
As opposed to previous works, we use the ‘chaotic’ activity
of the reservoir to gauge and analyze the stability of the
model. We consider reservoir networks that have feedback
connections from the readout to the reservoir (Fig. 1). This
closed loop setting enables the reservoir to perform complex
tasks. But it also poses a major difficulty to analyze the
stability of these networks. We break the readout-feedback
loop during training by unrolling the network over time (de-
fined as, Breaking the Closed Loop (BCL) methodology).
Then, we analyze the activity of the auxiliary open loop sys-
tem at intermediate time steps at different stages of training.
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The key contributions of this work are as follows:

• We show that the network tends to be less chaotic with
training, that is representative of the training success
of the network. We evaluate the nonlinear complex dy-
namics of the reservoir using Eigenvalue (EV) spectra
and observe that the spectral circle shrinks as train-
ing progresses, representative of decrease in random
chaotic projections.

• Furthermore, we extend our analysis to fixed point and
time varying targets and observe similar stability be-
havior. For time varying targets, we use the first order
reduced and controlled error (FORCE) training method
(Sussillo & Abbott, 2009), while we use standard least
squares regression to train fixed point targets.

• Additionally, we use Principal Component Analysis
(PCA) to further peek into the model’s activity dur-
ing training. Rajan et al. (Rajan et al., 2010b;a)
demonstrated that reservoirs operate in a dynamic
regime, wherein stable input driven periodic activity
and chaotic activity tend to coincide. Interestingly, we
observe that our ‘Breaking the Closed Loop (BCL)’
analysis preserves the interaction between the chaotic
spontaneous activity and non-chaotic input driven state
of the reservoir supporting the results from prior works
(Rajan et al., 2010b;a; Abbott et al., 2011).

• To validate the effectiveness of our BCL methodology,
we compared our analysis to the prior work (Rivkind &
Barak, 2017). Rivkind et al. (Rivkind & Barak, 2017)
analyze trained reservoir dynamics with closed loop
theory. We verify that the EV spectra obtained from our
proposed BCL after training a reservoir coincides with
the EV spectra obtained from the closed loop theory
(under same operating operating conditions).

In summary, we analyze the dynamics of a reservoir during
training and formulate a stability criterion, while substanti-
ating the results from prior work by Rivkind et al.(Rivkind
& Barak, 2017) and Rajan et al. (Rajan et al., 2010b;a) on
trained recurrent dynamics. It is worth mentioning that BCL
method of analysing a feedback system can seem as a trivial
approach. However, the EV spectra and PCA results ob-
tained from analysing the auxilliary open loop systems yield
interesting and novel statistics about the reservoir dynam-
ics and stability, that can be applied to complex dynamical
systems for large-scale analysis.

2. Model Description and Motivation for BCL
The dynamics of the reservoir model are given by

dx

dt
= −x(t) +Wr(t) + wFBz(t) + winu(t) (1)

where x(t) represents the internal state of the reservoir at a
given time, r(t) = φ(x(t)) is the neuronal firing rate, where
φ denotes a nonlinear function (φ(x) = tanh(x) in this
work). z(t) = woutr(t) is the output activity of the linear
readout neurons that are fed back into the reservoir with
feedback weights wFB . Input u(t) is fed into the reservoir
with input weights win. W represents an N ×N recurrent
weight matrix (withN equal to the number of neurons in the
reservoir) chosen randomly and independently from a Gaus-
sian distribution with 0 mean and variance, g2/N , where
g is the synaptic gain parameter. g regulates the overall
chaotic activity in a system. Previous studies have shown
that for large recurrent networks, values of g > 1 generate
increasingly complex and chaotic patterns of spontaneous
activity (Rajan & Abbott, 2006; Sompolinsky et al., 1988).
In our simulations, we vary g = 0.9, 1.2, 1.5 to understand
the behavior of the system under different chaotic condi-
tions. For simplicity in simulations, we follow previous
works (Rajan & Abbott, 2006; Rivkind & Barak, 2017) and
set input u = 0 for all our experiments. In all our simula-
tions, we start by randomly initializing the reservoir state
x(t) from Normal distribution and then continue with our
training experiments. Note, reservoirs are generally cate-
gorised under recurrent neural networks due to the weight
matrix W that imparts recurrency to such models (Rivkind
& Barak, 2017; Sompolinsky et al., 1988).

The objective of training the readout weights wout is to
ensure that the activity of output neurons (z(t)) match some
predefined target function f(t), i.e. z(t) = woutr(t) ≈
f(t). In case of a fixed point target, f(t) = A, where A is
a constant value. In case of a time varying target, f(t) =
g(t), say g(t) = sin(t), where the objective is to train
the reservoir to generate sinusoidal activity. It is evident
that learning wout for fixed point targets is simple, that
involves solving a least squares regression task woutr(t) =
A using standard algebraic and linear equation methods.
For time varying targets, solving for wout becomes slightly
complicated. Thus, we use the popular FORCE training
devised by Sussillo et al. (Sussillo & Abbott, 2009), a
widely used algorithm to train reservoirs for generating
sequential patterns.

A noteworthy observation from Eqn. (1) is that the reservoir
model is a closed loop system (due to wFB) with perpetual
feedback from the output, that affects the internal state x
of the reservoir at every time step. Since training occurs in
this closed loop dynamics, it is apparent that analyzing the
stability of the reservoir will be difficult considering the con-
tinuous temporal activity of the system. Here, the feedback
affects the training which in turn affects the stability of the
system. In several prior works, the authors, thus, analyzed
the behavior of random networks without feedback and
without any training consideration (Sussillo & Barak, 2013;
Rajan et al., 2010b; Stern et al., 2014). Such works theorized
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interesting results pertaining to the stability and robustness
criteria for chaotic networks. However, those results cannot
be extended to the feedback-based reservoir performing re-
alistic tasks. In fact, Rivkind et al.’s analyses (Rivkind &
Barak, 2017) on feedback-based reservoir hinges on the fact
that, the network has already been trained. Therefore, the
reservoir dynamics have converged to a unique stable state.
This allows them to use constant feedback that does not af-
fect the reservoir’s state. For a fixed point target f(t) = A,
Rivkind et al. describe the behavior of the trained reservoir
model (already at stable state x̄) as

x̄ = Wφ(x̄) + wFBA (2)

It is clear from Eqn. (2) that the feedback’s effect on tem-
poral dynamics is no longer there, since it is constant. An-
alyzing stability of a reservoir during training requires us
to incorporate feedback (that will change with every time
step). Hence, we unroll the reservoir dynamics over time
without affecting the properties of the system, as described
below.

3. Breaking the Closed Loop (BCL):
Unrolling the Reservoir over Time

The basic idea of BCL is illustrated in Fig. 2 (a), where the
feedback system can be viewed as a series of interconnected
cascaded systems unrolled over multiple time steps. As
t → ∞, the cascaded systems dynamics will converge to
that of the closed loop dynamics. This broken loop theory
is a widely used concept used in decision and control to ana-
lyze the robustness of feedback systems. Here, we take this
concept and apply it to analyzing reservoir dynamics during
training. Fig. 2(b) shows the unrolled reservoir dynamics
over time. Here, the output (zi(t)) from each state (Si) at a
given time step i is multiplied by wFB before being fed as
input to the network in the next time step. This preserves the
temporal property and the feedback dynamics of the reser-
voir that continually affects the reservoir’s internal state x(t)
at every time step. Consequently, the reservoir dynamics in
the unrolled state can be described as

dx

dt
= −x(t) +Wr(t) + wFBzunroll(t)

dx = −x(t)dt+Wr(t)dt+ wFBwoutr(t− 1)dt

x(t+ 1) = x(t) + dx
(3)

Eqn. (3) bears resemblance to Eqn. (1). The difference
arises from the inclusion of zunroll(t) that accounts for the
intrinsic state of the system from the previous time step
r(t− 1) = φ(x(t− 1)) in the unrolled reservoir, to obtain
the current state of the reservoir. Note, the input u(t) has
not been shown in Fig. 2 and Eqn. (3) for convenience in
representation. Now, let us consider training of a network

in an unrolled state. The basic idea of training is to learn
the weights wout to obtain z(t) = f(t) at each time step.
Therefore, wout in the unrolled reservoir system will change
over time. For a fixed point target (f(t) = A), this implies
solving the linear equation woutri(t) = A for each state
Si before proceeding to calculating the network dynamics
xi+1(t) for the next state Si+1. It is noteworthy to mention
that this simplistic analysis allows us to track the reservoir
activity during training without interfering or disrupting the
overall dynamics.

One might argue that unrolling over time will be computa-
tionally expensive and time consuming. We need to unroll
the system for each time step dt throughout the entire time
period of simulation to observe the behavior. However, un-
rolling time can vary from dt. We can possibly integrate
the state of the system for several time steps before we un-
roll. Fig. 2 (c) shows the system unrolled at every 10th
time step. In this case, the state of the system for the next
t = 11− 20 integration will utilize the last reservoir state,
i.e. S10 ≡ r10(t), as the unrolled feedback input zunroll(t).
This approximation helps us circumvent the computational
issue without affecting the overall dynamics of the sys-
tem, while allowing us to perform the stability analysis for
each unrolled reservoir state. Note, for integrated unrolling,
the last reservoir state after every unrolling (for instance,
S10, S20 in Fig. 2 (c)) is used to gauge the stability of
the system. Next, we describe the eigenvalue (EV) spectra
method that measures the stability of the unrolled reservoir
dynamics.

4. Eigenvalue (EV) Spectra: Stability
Evaluation Criteria

EV spectra is a powerful tool of random matrix theory that
allows one to examine the complex behavior of reservoir
networks with random recurrent connections. By diagonal-
izing the synaptic weight matrix W of the reservoir, we
obtain complex modes that represent the activity (specif-
ically, the frequency of oscillation) of each neuron in the
reservoir (Rajan & Abbott, 2006; Rajan, 2009). Each mode
is denoted by a complex eigenvalue, where the real part
(Re(EV )) denotes the decay rate of the neuronal oscillation
and the imaginary part (Im(EV )) denotes the frequency
of oscillation. It has been shown in several works that a
neuron or mode with Re(EV ) > 1 exhibits long-lasting
oscillatory behavior representative of chaos (Rajan & Ab-
bott, 2006; Rajan, 2009). The authors in (Panda & Srinivasa,
2018; Panda & Roy, 2017; Rajan, 2009) have shown that
a reservoir model with good memory must operate in a re-
gion between singular fixed point activity (Re(EV ) << 1)
and complete chaos (Re(EV ) >> 1). In the context of
learning, the reservoir’s activity which is generally chaotic
in the beginning of training must converge to stable states
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(a)

(b)

(c)

Figure 2. (a) Traditional breaking the loop theory used in control systems to analyze a closed loop system as a series of cascaded
interconnected open loop systems. (b) The feedback weight in the closed loop reservoir model can be broken using the BCL methodology
wherein, the network activity from the previous state is multiplied with wFB to affect the network activity in the current state in the open
loop cascaded system. The reservoir dynamics are unrolled over time to preserve the integrity of the system. (c) To avoid unrolling at
each time step dt for large scale simulations (that can be expensive), we use BCL while performing integrated unrolling over time. The
reservoir dynamics observed at the final time step of the last unrolled instance z10(t) is used with feedback throughout the simulation of
the current instance (t = 11− 20).

as training proceeds. That is, there should be fewer modes
with Re(EV ) > 1 as training progresses. This suggests
that the EV spectral circle must shrink to ensure the success
of training. In fact, recent works that use novel plasticity
rules to train the recurrent weights of the reservoir have
demonstrated the effectiveness of their learning methodol-
ogy with EV spectral circle shrinking (Panda & Srinivasa,
2018; Panda & Roy, 2017).

We take this EV spectra evaluation criterion and apply it
to analyze the activity of the reservoir at different unrolled
instances. Linearizing the reservoir’s dynamics will model
the diagonalization of synaptic weights W , which in turn,
determines the EV spectra. Linearizing Eqn. (1) which is a
closed loop system gives

δẋ = [−I +W ∗ r′ + wFBwoutr
′]δx (4)

In fact, Rivkind et al. analyzed the EV spectra of the trained

reservoir using Eqn. 4. In our case, as mentioned earlier,
we analyse the network activity after every unrolling to
gauge the stability of the system. Linearizing the unrolling
dynamics (Eqn. (3)) yields

δẋ = [−I +W ∗ r′ + wFBwoutr
′
unroll]δx (5)

We would like to emphasize that runroll is the reservoir
activity from the previous time step or unrolling instance.
In case of integrated unrolling (refer Fig. 2 (c)), the EV
spectra of the reservoir state S20 after the second unrolling
at t = 20 uses runroll = r10 value from last time step
of the previous integrated unrolled instance. Note, in our
simulations done in MATLAB, we use the available eig tool
to plot the EV spectra. This translates Eqn. (5) to −1 +
eig(Wr + wFBwoutrunroll) in the simulation framework
(note, proper usage of transpose and diag functions (not
shown here) are necessary to maintain the dimensionality
of the matrices during implementation).
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5. Results
5.1. EV spectra to evaluate training stability

We conducted reservoir training with the unrolling BCL
methodology and gauged the stability of training by evalu-
ating the EV spectra. First, we trained a reservoir of 1000
neurons to generate a fixed point target (f(t) = A = 1.5)
with least squares regression training for varying g values.
Since the fixed point target is a simple target, the reservoir
could easily get trained in t = 100 − 250 timesteps with
dt = 1. As a result, we did not have to use integrated un-
rolling. The results are shown in Fig. 3 for g = 0.9, 1.2, 1.5.
Note, the accuracy of the reservoir undergoing BCL un-
rolling is same as that of performing training on a Closed
Loop (CL) reservoir system for all experiments in Fig. 3.

Fig. 3 (Column 1) illustrates the EV spectra measured from
the reservoir dynamics at different steps. It is evident that
the spectral radius decreases with increasing time implying
the success of the training algorithm in converging the reser-
voir’s chaotic state to stable fixed point activity. To quantify
this further, we measured the radius of the spectrum at the
initial and final time step for each case. Table 1 illustrates
the radii results that further demonstrates shrinking of EV
spectra during training. In Fig. 3 (Column 2), we plot the
EV spectra of the reservoir system using Rivkind et al.’s
Closed Loop (CL) dynamics (Eqn. (2)). We use the open
source code available from the authors to perform this anal-
ysis. We use the same operating conditions across ours and
their method for iso-comparison. In Fig. 3 (Column 3),
we plot the EV spectrum obtained at the final time step or
unrolling instance from our BCL methodology and compare
with that of the spectrum of Rivkind et al.’s CL method.
The EV spectra coincide validating our methodology and
stability analysis. Rivkind et al. use the EV spectrum to
show that the dynamics of the trained reservoir is in a stable
regime after training. We get the same spectrum with BCL
unrolling at the final step (with a slowly evolving spectra in
the intermediate time steps). This establishes the effective-
ness of BCL to gauge the stability of a reservoir undergoing
training.

Furthermore, the coincidence of the final timestep EV spec-
trum from our analysis with that of Rivkind et al. also im-
plies that: our stability analysis at each unrolling timestep of
an open loop system provides a rigorous assessment of the
whole closed loop feedback system. We observe similar be-
havior across all g values. An interesting observation here is
that the total time for convergence increases with increasing
g (for instance, t = 100 for g = 0.9 to t = 250 for g = 1.5).
This is expected as g determines chaotic activity. Thus, a
reservoir with abundant chaotic projections will take more
time to converge during training. Please note, due to the
numerical nature of the simulations, we imposed a stopping
criteria where we put an upper bound on the maximum time

Target g tinitial tfinal

Fixed Point
0.9 0.779 0.587
1.2 0.963 0.708
1.5 1.176 0.814

Time-Varying 1.5 1.266 1.036

Table 1. EV spectra radius measured at initial and final time step
for different experiments: Fixed point target in Fig. 3 (Column 1:
a, b, c for different g values), Time-varying target in Fig. 4 (a) for
g =1.5. Note tinitial = 1 is the initial time step in all experiments.
tfinal = 100, 150, 250 for Fig. 3 (a) or g=0.9, Fig. 3 (b) or g=1.2,
Fig. 3 (c) or g=1.5 respectively. tfinal = 5600 for Fig. 4 (a)
corresponding to time-varying target experiment.

period of convergence(t ≤ 800 time steps) OR an upper
bound on the weight difference between consecutive time
steps (|wout(t)− wout(t− 1)| ≤ 1e− 5).

Next, we analyzed a reservoir being trained for time varying
targets to generate a sinusoidal (f(t) = Sin(20πt)) pattern.
We simulated a reservoir of 1000 neurons (with g = 1.5)
with FORCE training. Fig. 4 shows the results for EV
spectra observed at several time steps during training. It is
clear that the spectrum shrinks over time (also quantified by
the radii results in Table 1). In fact, the spectrum at the final
time steps: t = 5999, 6000, completely match signifying
the convergence of the training algorithm. We also see that
the output activity during training and testing matches with
that of the target, empirically indicating the success of the
training rule. In Fig. 4 analysis, the network was unrolled
for each time step dt = 1. As a result, the simulation time
was longer (∼2 minutes as per real clock time). In contrast,
using integrated unrolling over time (as discussed in Section
3) decreases the overall simulation clock time at the cost of
degraded convergence.

Fig. 5 compares the output activity and target for varying
integrated unrolling time instances (t = 2, 10, 50, 100). We
see that as the unrolling takes place at increased interleaved
time steps, the output activity fails to match the target activ-
ity during testing. While the curves match during training,
the testing fails with the output activity significantly shift-
ing away from the target as the integrated time between
unrolling increases. The shift during testing is indicative
of a decline in accuracy. This is expected as the unrolling
behavior approximates the network dynamics. And, with
interleaved unrolling, certain significant aspects of the tem-
poral dynamics might get affected. Please note, the EV
spectra for the reservoir dynamics corresponding to Fig. 5
(not shown), specifically for t = 50, 100 do not exhibit
shrinking behavior that further corroborates the empirical
results seen in Fig. 5. We, therefore, recommend using
unrolling at each time step to attain reliable results.

We would like to emphasize that the presented analysis is the
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g = 0.9

g = 1.2

g = 1.5

BCL EV Spectrum : Ours CL EV Spectrum : Rivkind et al. Comparison of EV spectrum 
between BCL (final) and CL 

(a)

(b)

(c)

Figure 3. EV spectra for varying values of g = a) 0.9, b) 1.2, c) 1.5. Column 1 shows the EV spectra evaluated with our methodology at
various time steps during training. The black arrow represents the shrinking of the spectra with increasing time steps signifying stability
and convergence behavior with reduced chaotic activity. Column 2 shows the EV spectra plotted on a trained reservoir model using the
Closed Loop (CL) methodology proposed by Rivkind et al. Column 3 validates the effectiveness of our BCL methodology showing that
the EV spectrum obtained from our BCL method at the final time step coincides with that of Rivkind et al.

first work to show the stability of training a recurrent model
with time varying target. We would also like to note that our
experiments were restricted to simple fixed-point or time-
varying target analysis due to the intensive numerical nature
of simulations as well as the limitation of reservoir training
methods. We believe that our analysis can be extended to
complex problems on real-world datasets, given that the
reservoir training in such cases can be done effectively.

5.2. PCA to analyse BCL methodology

Rajan et al. (Rajan et al., 2010a) demonstrated that reser-
voirs (that have converged to a given state) exhibit chaotic
as well as stable periodic activity. They use PCA to analyze
the network activity and visualize the stable and chaotic
trajectories. The network state at any given time instant
can be described by a point in the N-dimensional space
with coordinates corresponding to the firing rates of the N
neuronal units. With time, the network activity traverses a
trajectory in this N-dimensional space and PCA can be used
to visualize the trajectory. To conduct PCA, we diagonalize
the equal-time cross-correlation matrix of the firing rates of

the N units as

Dij =< (ri(t)− < ri >)(rj(t)− < rj >) > (6)

where the angle brackets, <>, denote time average. The
eigenvalues of the matrix D (specifically, λa/

∑N
i=1 λa,

where λa is the eigenvalue corresponding to principal com-
ponent a) indicate the contribution of different Principal
Components (PCs) toward the fluctuations/total variance
in the spontaneous activity of the network. Rajan et al.
observed that the network activity shows fluctuating pat-
terns and irregular trajectory in the higher order PCs (such
as PC > 10) characteristic of chaos. In contrast, the tra-
jectories for lower order PCs are more regular and non-
fluctuating characteristic of stability. To further corroborate
the effectiveness of BCL for analyzing the training stability
of reservoir models, we plotted the PCs for different com-
ponents (PC 1, 2, 3, 41, 42) in Fig. 6 for a model trained
with fixed point target (corresponding to Fig. 5 (a)). Note,
the network activity was observed after training using the
BCL unrolling methodology. We observe slowly fluctuating
patterns for PC 1, 2, 3, while extensively fluctuating patterns
for PC 41, 42.

Plotting the PC curves for the reservoir trained with CL
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Training Testing

(a)

(d)

(b)

(c)

Figure 4. EV spectra observed during training of a reservoir model to generate a sinusoidal target. Here, the unrolling was perfomed at
each time step dt = 1. (a) EV spectra converges with increasing training time showing reduced chaos and stability behavior. (b) EV
spectrum at the final time steps coincide establishing the convergence of training behavior. The output activity z(t) and target curves
obtained during (c) training and (d) testing. We observe a complete match between target and output showing the success of the training
algorithm.

t = 2

t = 50

t = 10

t = 100
Training

TrainingTraining

Training

TestingTesting

Testing Testing

(a)

(c)

(b)

(d)

Figure 5. The output activity and the target are shown for different training and testing instances when we perform integrated unrolling
over time. The unrolling is performed at interleaved time steps with time intervals corresponding to (a) t = 2 (b) t = 10 (c) t = 50 (d)
t = 100. Training is not affected due to unrolling. However, the testing curves show significant degradation in performance as the time
interval between two unrolling instances increases.
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BCL (ours)

CL (Rivkind et al.)
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Figure 6. Trajectories corresponding to various Principal Components of a trained reservoir model is shown. (a) We obtain the PCs after
training a reservoir for fixed-point target (similar to Fig. 3(a)) with our BCL unrolling over time methodology. (b) We obtain the PCs of a
trained network using the closed loop methodology proposed by Rivkind et al.

dynamics as proposed by Rivkind et al., we observe non-
fluctuating pattern of activity across both high and lower
order PCs. This suggests an absence of chaotic activity in
the system. However, as Rajan et al. have demonstrated,
there will always be chaos in a reservoir coinciding with
stable patterns of activity. We believe that the assumption
Rivkind et al. make regarding the convergence of the sys-
tem to stable state before analyzing the network activity
(Eqn. (2)) causes such discrepancy. PCA results further
establish the correctness of our methodology in preserving
the integrity of the system and its temporal dynamics.

6. Conclusion
We present a first of its kind methodology to analyze the
stability of reservoir models (with feedback) during training.
Essentially, we unroll the reservoir dynamics over time and
analyze the eigenvalue spectra of the reservoir. The shrink-
ing spectra during training underscores the success of the
training methodology while signifying the convergence of
the reservoir’s chaotic activity to more convergent stable
states. To minimize the number of unrolling time steps for
large scale simulations, we also presented the integrated un-
rolling over time methodology. However, we observed that
the accuracy of the system gets affected when the unrolling
instances are done over longer time intervals. We showed

the effectiveness of our proposed methodology for training
reservoir models on fixed point as well as time varying tar-
gets. Our analysis establishes eigenvalue spectra /breaking
the closed loop methodology as a reliable metric/technique
to evaluate/gauge the stability of training in reservoir mod-
els, respectively. In the future, we would like to extend this
proposal to analyze the robustness of the network prediction
and examine the interpretability of the network’s behavior
during and after training.
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