
Received September 6, 2021, accepted September 20, 2021, date of publication September 29, 2021,
date of current version October 7, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3116418

Network Compression via Mixed Precision
Quantization Using a Multi-Layer Perceptron
for the Bit-Width Allocation
EFSTATHIA SOUFLERI , (Graduate Student Member, IEEE),
AND KAUSHIK ROY , (Fellow, IEEE)
School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN 47907, USA

Corresponding author: Efstathia Soufleri (esoufler@purdue.edu)

This work was supported in part by the Center for Brain Inspired Computing (C-BRIC), one of the six centers in Joint University
Microelectronics Program (JUMP), in part by the Semiconductor Research Corporation (SRC) Program sponsored by Defense Advanced
Research Projects Agency (DARPA), in part by the Semiconductor Research Corporation, in part by the National Science Foundation, in
part by the Intel Corporation, in part by the Department of Defense (DoD) Vannevar Bush Fellowship, in part by the U.S. Army Research
Laboratory, and in part by the U.K. Ministry of Defence under Agreement W911NF-16-3-0001.

ABSTRACT Deep Neural Networks (DNNs) are a powerful tool for solving complex tasks in many
application domains. The high performance of DNNs demands significant computational resources, which
might not always be available. Network quantization with mixed-precision across the layers can alleviate
this high demand. However, determining layer-wise optimal bit-widths is non-trivial, as the search space is
exponential. This article proposes a novel technique for allocating layer-wise bit-widths for a DNN using a
multi-layer perceptron (MLP). The Kullback-Leibler (KL) divergence of the softmax outputs between the
quantized and full precision network is used as the metric to quantify the quantization quality. We explore the
relationship between the KL-divergence and the network size, and from our experiments observe that more
aggressive quantization leads to higher divergence, and vice versa. The MLP is trained with layer-wise bit-
widths as labels and their corresponding KL-divergence as the input. The MLP training set, i.e. the pairs of
the layer-wise bit-widths and their corresponding KL-divergence, is collected using a Monte Carlo sampling
of the exponential search space. We introduce a penalty term in the loss to ensure that the MLP learns to
predict bit-widths resulting in the smallest network size. We show that the layer-wise bit-width predictions
from the trained MLP result in reduced network size without degrading accuracy while achieving better or
comparable results with SOTA work but with less computational overhead. Our method achieves up to 6x,
4x, 4x compression on VGG16, ResNet50, and GoogLeNet respectively, with no accuracy drop compared
to the original full precision pretrained model, on the ImageNet dataset.

INDEX TERMS Deep learning, efficient deep learning, neural networks, network compression, quantization,
mixed-precision, multi-layer perceptron.

I. INTRODUCTION
Deep Neural Networks are state-of-the-art solutions for
solving a plethora of complex tasks, varying from image
classification, object detection, and voice recognition tasks
to communication and networking applications [1], [2].
These networks require tremendous computational resources,
which might not always be available in resource-constrained
devices, to achieve competitive performance on these tasks.
A promising solution is the quantization of the weights of
the network. This process trains or converts a full precision

The associate editor coordinating the review of this manuscript and

approving it for publication was Thomas Canhao Xu .

network into limited precision while trying to maintain per-
formance.

There exist a great number of works in literature that
train a neural network from scratch with limited precision
and achieve high compression rates [3]–[5]. However, train-
ing in discrete space is challenging, and the convergence
is slow [6]. To address this issue, emerging works con-
vert a full precision network into its quantized version [6],
[7]. Such techniques are commonly referred to as post-
training quantization. Selecting the precision for each layer
is a non-trivial problem as the search space is exponen-
tial in size. For a network with L layers and m possible
bit-width choices for each layer, we havemL possible choices.

VOLUME 9, 2021 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 135059

https://orcid.org/0000-0001-8699-9940
https://orcid.org/0000-0002-0735-9695
https://orcid.org/0000-0003-1072-0792

E. Soufleri, K. Roy: Network Compression via Mixed Precision Quantization Using MLP

FIGURE 1. Illustration of the proposed framework: (a) the collection of the training set for the MLP. Each layer of the network is quantized
with different precision bi , i = 1, .., L, where L is the number of layers in the network. The KL-divergence � between the softmax output of the
original full precision and the quantized model is computed. This process is repeated S times to collect the entire dataset for the MLP. (b) The
MLP is trained using the collected dataset. The input to the MLP is the KL-divergence �j and the output is the bit-width across the layers of the
network, for each of the training samples j, j = 1,. . . ,S. The MLP has L output neurons, which is equal to the number of layers of the network
intended to be quantized.

Many prior works that avoid the exponential search problem
have suggested heuristics to allocate the mixed-precision
bit-widths or using a proxy to formulate a solvable optimiza-
tion problem [8], which adds extra computational overhead.
Such methods deploy Bayesian optimization [9], evolution-
ary search algorithms, [10], [11] calculation of the layer-wise
quantization error [8] and adversarial noise computation [7].
We provide more details for the methods mentioned above
in section II. Our work, presented in this article, belongs in
the post-training quantization category that uses different bit
precision across the network’s layers and reduces the com-
putational overhead by using a multi-layer perceptron (MLP)
model for determining the mixed-precision bit-widths.

In this article, we study the impact of weight quantiza-
tion on the performance of neural networks. We observe
that more aggressive quantization leads to higher divergence
between the output of the full precision and the quantized
network, and vice versa. Based on this observation, we pro-
pose a novel approach tomixed-precision bit-width allocation
using a Multi-Layer-Perceptron (MLP) model trained using
the Kullback-Leibler (KL) divergence between the softmax
output of the full precision and the quantized network. The
KL-divergence is used as a metric to determine the per-
formance divergence between the two networks. The net-
work intended to be compressed is quantized with multiple
mixed-precision bit-width configurations determined using
Monte Carlo sampling of the search space. For each sample,
the KL-divergence at the output is computed. Pairs of the bit-
widths (vector) and the KL-divergence are collected, and they

constitute the training set for the MLP. The MLP is trained to
predict the bit-width configuration (output), given as input the
desired KL-divergence. Since multiple bit-width configura-
tions exist for a given KL-divergence, we introduce a network
size penalty to the MLP loss to ensure the network learns to
predict configurations leading to the smallest network size.
Figure 1 illustrates the proposed framework. We evaluate our
framework on the ImageNet dataset [12], which is a highly
complex dataset for image classification problems, using
three different deep neural network architectures, namely
VGG16 [13], ResNet50 [14] andGoogLeNet [15]. The exper-
imental results indicate that our method achieves 8x network
compression with at most 0.7% accuracy drop across all the
evaluated network architectures.

The rest of the article is organized as follows: the related
works are summarized in Section II. Section III presents
the impact of quantization on the network and describes the
implementation details of the proposed framework: training
set collection for the MLP, MLP training, and bit-width allo-
cation across the layers of the network. Section IV reports
the experimental evaluation of the proposed method, com-
pares it with state-of-the-art works and analyzes the compu-
tational overhead. Finally, section V concludes the article and
describes future work.

II. RELATED WORK
In the domain of network quantization, there exist two main
approaches [16]: Quantization-Aware-Training (QAT) and
Post-Training Quantization (PTQ). QAT refer to the case of

135060 VOLUME 9, 2021

E. Soufleri, K. Roy: Network Compression via Mixed Precision Quantization Using MLP

either training a network from scratch with limited precision
or fine-tuning for a few epochs with limited precision after
network quantization. PTQ refers to the case of quantizing a
pretrained full precision network without retraining it. Note,
that methods included in PTQ category can be data-free or
may require a small calibration set, which is readily avail-
able [16]. It is worth mentioning that, both QAT and PTQ
categories can include methods that allocate mixed-precision
weights across the layers of the network. As far as QAT is
concerned, there is a plethora of works that trains highly
compressed networks [5], [9], [17]–[20]. In [20], the authors
model the quantization problem as a discrete constrained
optimization problem which is solved using the Alternating
Direction Method of Multipliers (ADMM) during training.
Reference [19] proposes incremental weight partitioning into
two groups, group-wise quantization and retraining. Authors
in [18] introduce a quantization method to reduce this loss by
learning a symmetric code-book for particular weight sub-
groups. Furthermore, [17] proposes a quantization scheme
that allows inference to be carried out using integer-only
arithmetic. In [5] the authors suggest a method that uses
low bit-width gradients along with quantized weights and
activations during training. Authors in [9] start with a pre-
trained full precision network, deploy Bayesian optimization
to allocate the bit precision across the layers of the network,
and then fine-tune the network with limited precision for
a few epochs. An example of extremely compressed net-
works are the binary and ternary networks [3], [4], [21]–[23].
However, as mentioned earlier, QAT leads to slow network
convergence, and optimization is more difficult in the discrete
space [6]. Moreover, the fine-tuning step after quantization
can be impractical in many real scenarios, where there is
no time to retrain the network after quantization, as the net-
work needs to be deployed immediately [24]. For example,
in online learning the network needs to be trained on new data
and then deployed immediately.

The second approach (PTQ), including our work, has
emerged to address the above challenges. Authors in [6],
[25] suggest quantizing the network using equal bit-width
across all the layers by using the signal-to-quantization-
noise-ratio (SQNR) and the floating and fixed point error
probability, respectively. This approach avoids searching the
exponential solution space, however, results in sub-optimal
bit-width allocation as each layer might have a different
impact on the network’s performance. Thus, researchers
have suggested using mixed-precision quantization across
the layers of the network. These works commonly pro-
pose using a proxy to formulate a solvable optimization
problem for bit-width allocation. In [10], [11], the authors
use an evolutionary-algorithm based method to allocate the
bit-widths. Authors in [8] formulate an optimization prob-
lem based on layer-wise quantization errors and they solve
it using Lagrangian multipliers. The work in [7] suggests
the use of adversarial noise to formulate the optimization
problem which is solved by using the Karush-Kuhn-Tucker
(KKT) conditions. Further, research has emerged [26] that

specializes the quantization policy for the different hard-
ware architectures. Different from [26], our work makes
no assumption about the underlying hardware. Note, that
our proposal belongs to the data-free PTQ techniques
with mixed-precision allocation across the network’s layers.
Table 1 lists and summarizes the different methods discussed
in this section.

TABLE 1. Summary of the related work methods.

Related to network quantization, in the domain of network
compression, there are techniques like pruning, that can be
applied after or before quantization to compress the network
further. These techniques are orthogonal to our proposal and
the other post-training techniques, and can be implemented
on top of them for further network compression. For instance,
Han et al. [27] suggest pruning and Huffman coding after
quantization. Generally, pruning works [28]–[31] propose
the removal of network weights based on some metric (for
example the absolute values of the weights, etc.). In this way,
the size of the network can be reduced and the network can
be more easily deployed in resource-constrained scenarios.

III. MULTI-LAYER PERCEPTRON FOR LAYER-WISE
BIT-WIDTH ALLOCATION
A. CHALLENGES OF QUANTIZATION
The bit-width allocation across the layers of the network
affects its performance and size. When a quantized network
is presented with an input it results in errors or deviations
from a full precision network. This is a result of errors from
quantization accumulating at each layer and reflecting it at
the output of the network. Different bit-width combinations
lead to different impacts on performance and size. Since the
search space of all the possible combinations of bit-widths is
exponential, finding the optimal solution is non-trivial. The
problem is further complicated by the fact that two differ-
ent bit-width combinations may result in similar deviations
(many to one mapping) in network performance.

VOLUME 9, 2021 135061

E. Soufleri, K. Roy: Network Compression via Mixed Precision Quantization Using MLP

Addressing the challenge of quantifying deviations can be
done in two ways either by combining layer-wise errors into a
single metric or by using a cumulative error metric at the net-
work output. We capture the cumulative impact of the differ-
ent bit-width combinations on the network’s output through
our proposed method. Further, the proposed method accounts
for the many to one problem. If two bit-width combinations
have the same impact on the network’s performance, our
method selects the bit-width with the smallest network size,
and it is verified experimentally in section IV-C.

B. MULTI-LAYER PERCEPTRON
In this section, we present a novel technique to allocate a
layer-wise mixed-precision bit-width for quantizing a deep
neural network. The proposed method uses a Multi-Layer-
Perceptron (MLP) where the input to the MLP is the
KL-divergence between the softmax output of the full preci-
sion and the quantized network and the output is the bit-width
configuration for the compressed network. Our methodol-
ogy consists of three main steps: sampling the search space
to create a custom training set for the MLP, MLP model
training, and prediction of the bit-width configuration for the
compressed network.

1) NOTATION
LetM be a full precision L layered deep neural net, let θ sym-
bolize the parameters of a trained full precision network, and
θ̃ the parameters of a quantized network. The input (image)
to the networkM is symbolized as x.

2) TRAINING SET COLLECTION FOR THE MLP
In this section, we describe how the training set for the MLP
is collected. Let S be the size of the training set T for the
MLP. Each sample in the training set T is a tuple of input
and label. The label is a bit-width configuration Bj and the
input is the corresponding KL-divergence�j between the full
precision network and quantized network whose bit-width
configuration is Bj, where j denotes in jth sample in T .
The bit-width configuration Bj = (bij) is a vector of size

L where i ∈ {1, ..,L}, j ∈ {1, .., S} and L is the number of
layers of the networkM . Each element bij ∈ Bj represents the
bit-width for the corresponding layer of the network M . The
bit-width configuration Bj is sampled from the search space
using aMonte Carlo sampling with an additional constraint of
bij ∈ [bmin, bmax]. If bij is extremely low i.e. bij < bmin, this
leads to high KL-divergence for most samples in T . Similarly,
high bij i.e. bij > bmax results in negligible KL-divergence.
Therefore, bmin and bmax are parameters that are determined
experimentally for each network. This is done by quantizing
all the layers with the same bit-width and evaluating the infer-
ence accuracy. The values of bmin and bmax are chosen such
that bmin is the maximum bit-width that leads to an accuracy
drop 50% or greater when compared to the full precision
network and bmax is chosen such that it is the minimum
bit-width that maintains the accuracy of the full precision
network. Note, that a straightforward selection for bmax could

be the precision of the original pretrained model (i.e. bmax =
32 bits). However, the network can be quantized to 16 bits or
sometimes lower bit-widths, depending on themodel, without
accuracy degradation. Thus, we select bmax as mentioned
previously, in order to avoid quantizing the network with
more bits than needed and at the same time achieving smaller
model size. Furthermore, using bmax < 32 bits reduces the
search space during the Monte Carlo sampling. It is worth
mentioning that the above process of using the same bit-width
across all the layers happens once to obtain the bmin and bmax ,
and eventually each layer of the networkM is quantized with
different bit-widths (mixed-precision bit-width allocation).

For each sampled bit-width configuration Bj = (bij)
with j ∈ {1, 2, .., S} and i ∈ {1, ..,L}, we quan-
tize the full precision network M with the Bj and the
KL-divergence �j at the output is computed. This process
results in a training set T with S samples of the form T =
{(�1,B1), (�2,B2), .., (�S ,BS)}, which is used to train the
MLP. Similarly, we collect the testing set for the MLP model.

We use the KL-divergence between the full precision
and the quantized network softmax output as a metric to
quantify the divergence between the two networks. The
KL-divergence (�) is calculated as the average of N images
from the training set:

� =
1
N

N∑
i=1

KL(M (θ, xi),M (θ̃ , xi)) (1)

Note, that we are using the softmax of themodel’s output in
order to obtain the probability distribution of predicting each
class. This probability vector is used for the KL-divergence
computation. By definition, the KL-divergence is a measure
of how one probability distribution is different from a second
reference probability distribution [32].

3) MLP TRAINING PROCESS
The MLP training is similar to the training of a typical super-
vised learning task that seeks to minimize the empirical risk:

min
θ

L(θ) =
1
S

S∑
j=1

f (MLP(θ;�j),Bj) (2)

where f (·, ·) is the loss function (typically mean squared error
or cross-entropy loss) and S is the number of samples in the
training set.

However, the standard empirical risk described in
Equation 2 does not account for the many to one map-
ping problem described in subsection III-A. The many to
one mapping problem, i.e. the problem when two different
bit-width configurations result in the same KL divergence,
can be accounted for by ensuring that the MLP learns the
configuration that results in smallest network size. To ensure
that the MLP learns the smallest network size, we need to
introduce a penalty parameter in Equation 2. The modified
empirical risk of the MLP includes the size of the quantized

135062 VOLUME 9, 2021

E. Soufleri, K. Roy: Network Compression via Mixed Precision Quantization Using MLP

network in the loss and it is given by Equation 3.

min
θ

L(θ) =
1
S

S∑
j=1

f (MLP(θ;�j),Bj)

+
β

S

S∑
j=1

L∑
i=1

bij ∗ pi (3)

where f (·, ·) is the loss function (typically mean squared error
or cross-entropy loss), S is the number of samples in the
training set, β is a scalar and pi is the number of parameters of
the ith layer of the networkM. The product bij∗pi corresponds
to the size of the ith layer. The trained MLP predicts the
different bit-widths across the layers of theM network (MLP
output), given the desired KL-divergence (MLP input). The
desired KL-divergence is user-defined. Algorithm 1 summa-
rizes the steps for the bit-width allocation across the layers of
a networkM .

Algorithm 1: Bit-Width Allocation
Input: Full Precision networkM with L layers, desired

KL-divergence
Output: Bit-width

1 Sample Collection:
for j← 1 to S do

Generate the random bit-width Bj
QuantizeM with Bj
Compute the KL-divergence �j for N training
images
Store the pair (�j,Bj)

end
2 Train MLP with the S samples
3 Feed the desired KL-divergence to the MLP and obtain

the bit-width configuration prediction B = (b1, . . . , bL)
for M

IV. EXPERIMENTAL EVALUATION
A. BIT-WIDTH ALLOCATION
In this section, we deploy our framework to compress the
VGG16 [13], the ResNet50 [14], and the GoogLeNet [15]
network architectures trained on the ImageNet dataset [12].
The proposed compression framework uses an MLP which
consists of two fully connected layers with 200 neurons in
the hidden layer. The number of output neurons is equal to the
number of layers of the network to be quantized. For example,
for a VGG16 model, which has 16 layers, the MLP will have
16 output neurons. The MLP is trained using empirical risk
minimization given by Equation 3 and we use mean squared
error as the loss function f . For all the models, we use an
MLP training set of size S = 1200 to train the MLP, by quan-
tizing the model with Monte Carlo sampled bit-widths and
computing the KL-divergences between the full precision and
the quantized model. For the KL-divergence computation,
we observe that N = 50 (refer to Equation 1) training images
are a sufficient number that captures the KL-divergence

between the full precision and quantized model. Note, that
for the KL-divergence calculation we do not use the testing
images but training images. The activations of the network
are set to 8-bit precision for all the simulations. The proposed
methodology is implemented using PyTorch [33].

B. QUANTIZATION SCHEME
In the quantization process, a key component is the choice
of the quantization function. In essence, the quantization
function takes real values represented in floating-point and
maps them to a lower precision range. A popular choice for
the quantization function is defined as follows [34]:

Q =
⌊ r
s

⌋
− z (4)

where Q is the quantization operator, r is the real-valued
input, s is the scale factor and z is the zero-point. The b c oper-
ator is the floor operator that maps a real value to an integer
through a rounding operation. This method of quantization
is known as uniform quantization, as the resulting quantized
values (quantization levels) are uniformly spaced. The scaling
factor s divides a given range of real values r into a number
of partitions and it is defined using the following formula:

s =
β − α

2b − 1
(5)

where [α, β] denotes the clipping range, i.e. a bounded range
that we are clipping the real values to, and b is the quantiza-
tion bit-width. Thus, in order to determine the scaling factor,
the clipping range [α, β] should be defined first. For the
uniform asymmetric quantization method, the clipping range
is not symmetric with respect to the origin. A popular choice
for the clipping range is to use the minimum/maximum value
of the signal (α = rmin and β = rmax). For the uniform
symmetric quantization scheme, the clipping range should
be symmetric to the origin and therefore α = −β. A pop-
ular choice is based on the min/max values of the signal:
−α = β = max(|rmax |, |rmin|). In this work, we use uni-
form symmetric weight quantization and uniform asymmet-
ric activation quantization for our experiments. We use the
ReLU activation function that always results in non-negative
values. This causes an imbalance and therefore asymmetric
is preferred over symmetric quantization for quantizing the
activations. Furthermore, per-tensor quantization of weights
and activations is applied, meaning that we use a single set of
quantization parameters (quantizer) per tensor.

C. KL-DIVERGENCE
This section studies the relationship between the size of the
network and the KL-divergence between the full precision
and quantized network output. Figure 2 (a) is a plot of
network size versus KL-divergence and visualizes a subset
of the training set T that was used to train the MLP in
order to make the bit-width configuration predictions for
the VGG16 [13] network architecture. Each sample in the
training set is depicted as a blue dot. The x-axis represents the
resulting size of the VGG16 network when quantized with a

VOLUME 9, 2021 135063

E. Soufleri, K. Roy: Network Compression via Mixed Precision Quantization Using MLP

FIGURE 2. The KL-divergence versus the total size of weights and activations (MB) of: (a) VGG16 [13], (b) ResNet50 [14], and (c) GoogLeNet [14] on
ImageNet [12]. The x-axis represents the resulting size of the GoogLeNet network when quantized with a bit-width configuration B = (b1, . . . , bL) from
the training set T and the y-axis is the corresponding KL-divergence from T . The blue dots represent the samples from the MLP training set and the red
dots represent the MLP’s predictions.

FIGURE 3. The bit-width allocation across the layers of: (a) VGG16 [13], (b) ResNet50 [14], and (c) GoogLeNet [14] for KL-divergence = 0.1.

bit-width configuration B = (b1, . . . , bL) from the training
set T and the y-axis is the corresponding KL-divergence
from T . We observe that two different bit-width configura-
tions, consequently two different network sizes, may result in
the same KL-divergence. This is because the order of the bit-
widths bij in the bit-width configuration B plays a significant
role, that is some layers of the network are more sensitive
to quantization than others, which is leveraged with mixed-
precision bit-width allocation.

The proposed training method with the aid of the added
penalty described in Equation 3 forces the MLP to learn
and predict the bit-width configuration that results in the
smallest network size. We verify this by plotting the MLP
predicted sizes in Figure 2 (a). The MLP predictions for
various KL-divergence values are marked with red dots. The
KL-divergence values are input to the MLP and the predicted
bit-width configurations B = (b1, . . . , bL) is used to compute
and plot the resulting network size on the x-axis. We observe
from Figure 2 (a) that beyond a certain network size the
KL-divergence value saturates near zero. This is expected
because in this regime the network is not aggressively quan-
tized and therefore its output does not diverge a lot compared
to the original model.

In a similar manner to Figure 2 (a), we plot the train-
ing samples T with blue dots and the MLP predictions
with red dots for ResNet50, and GoogLeNet architectures in

Figures 2 (b) and 2 (c), respectively. We make similar obser-
vations for ResNet50 and GoogLeNet architectures, i.e. the
MLP trained for the ResNet50 and GoogLeNet architectures
learns the bit-width configuration leading to the smallest
network size.

D. BIT-WIDTH ALLOCATION ANALYSIS
This section presents an analysis of the bit-width allocation
across the network’s layers obtained using our proposed
methodology. Firstly, we select KL-divergence to be equal
to 0.1 making the divergence between the full precision and
the quantized network is negligible. Figure 3 (a) illustrates
the bit-width allocation for VGG16 that is obtained from the
MLP predictionwhen the input KL-divergence is equal to 0.1.
Next, we repeat the above process, but we use KL-divergence
equal to 1.5 (Figure 4 (a)). In this case, the output of the full
precision network significantly divergences from the quan-
tized network. From the bar graphs in Figures 3 (a) and 4 (a),
we observe that the network is more aggressively quan-
tized when KL-divergence is 1.5 compared to KL-divergence
of 0.1. This result is in line with our expectation since
aggressive quantization introduces more errors and thus the
output of the full precision and the quantized model diverges
more.

Moreover, we observe that most of the initial layers
have higher bit-width than the later ones. Our finding

135064 VOLUME 9, 2021

E. Soufleri, K. Roy: Network Compression via Mixed Precision Quantization Using MLP

FIGURE 4. The bit-width allocation across the layers of: (a) VGG16 [13], (b) ResNet50 [14], and (c) GoogLeNet [14] for KL-divergence = 1.5.

FIGURE 5. The results of state-of-the-art methods on: (a) VGG16 [13], (b) ResNet50 [14], and (c) GoogLeNet [14] over ImageNet [12] dataset.

is corroborated by previous work that states that trained
networks are more sensitive to their initial layer weights [35].
For ResNet50 and GoogLeNet, we perform a similar anal-
ysis as VGG16. The resulting bit-width is depicted in
Figures 3 (b), 4 (b), and 3 (c), 4 (c), respectively. Note, that
similar observations as VGG16, also hold for ResNet50 and
GoogLeNet.

E. COMPRESSION RESULTS AND SOTA COMPARISON
In this section we present the compression results that
our method achieves for VGG16 [13], ResNet50 [14], and
GoogLeNet [15] on ImageNet dataset [12] and we compare
our results with state-of-the-art works. Top-1 inference accu-
racy is the metric used to quantify the performance of the
network.

Our method compresses VGG16 [13] up to 6x when com-
pared to the full precision model (32-bit precision weights
and activations) with no accuracy drop (see Figure 5 (a)).
On ResNet50 and GoogLeNet [14], our method achieves
up to 4x compression compared to the full precision model
(32-bit precision weights and activations) while maintaining
the inference accuracy (see Figures 5 (b) and 5 (c)).

We compare the results from our experiments with the
following state-of-the-art works, including both 1) QAT
methods: Binarized Weight Network (BWN) [3], Ternary
Weight Network (TWN) [21], Incremental Network Quan-
tization (INQ) [19], Fine-grained Quantization (FGQ) [22],
Two-bit Shift Quantization (TBSQ) [20], Integer

Arithmetic-only Inference (IAOI) [17], Compression Learn-
ing by In-parallel Quantization (CLIP-Q) [9], Symmetric
Quantization (SYQ) [18], and 2) PTQ methods: Adaptive
Quantization (AQ) [7], Evolutionary quantization of neu-
ral networks with mixed-precision (EMQ) [10], Optimizing
the Bit Allocation for Network Compression (OBA) [8]
and Mixed Precision Quantization of DNNs via Sensitivity
Guided Evolutionary Search (EvoQ) [11].

Our work demonstrates better performance than uniform
bit-width allocation (visualized with red plot) on VGG16,
ResNet50 and GoogLeNet, illustrated in Figures 5 (a), 5 (b),
and 5 (c). This is because uniform quantization treats all
the layers equally while mixed-precision bit-width allocation
captures the impact that each layer has to the network’s
output more effectively and efficiently. Our method either
outperforms or achieves comparable results to state-of-the-art
works across different networks architectures, as illustrated
in Figures 5 (a), 5 (b), and 5 (c). Our method performs better
than all the SOTA works and has performance comparable
with SYQ and OBA on VGG16, FGQ, SYQ, IAOI, INQ and
OBA on ResNet50, and CLIP-Q on GoogLeNet. EvoQ and
EMQperform better than our method on ResNet50. However,
both methods are based on evolutionary search algorithms
that evaluate the fitness function multiple times, and also
they require a calibration set to perform feature adjustments.
This adds extra computational complexity, and we report the
exact computational overhead numbers in Section IV-F. Note,
that our method achieves high compression results with less

VOLUME 9, 2021 135065

E. Soufleri, K. Roy: Network Compression via Mixed Precision Quantization Using MLP

computational overhead than SOTA works, as it is analyzed
in the next section.

F. ANALYSIS OF COMPUTATIONAL OVERHEAD
In this section, we will analyze the computational overhead
of our method and we will compare it with other quantization
methods that require retraining and/or use other forms of opti-
mization. All the experiments were conducted on a system
with a Nvidia GTX 1080ti GPU.

The computational overhead is reported in terms of effort
factor (ρ). Effort factor is defined as the ratio of the number
of FLOPs required to compute the bit-width allocation using
a particular method to the number of FLOPs required for
one training epoch over the entire training images of the
dataset, in our case ImageNet. The effort factor (ρ) is given
by Equation 6.

ρ =
of FLOPs of an allocation method

of FLOPs (forward + backward pass) ∗ I
(6)

where I is the number of images of the training set. For
ImageNet dataset, the training set consists of 1.2 million
images.

The number of FLOPs required for a training epoch is
considered to be three times the number of FLOPs required
for a forward-pass [36]. Note, that the number of FLOPs
required to compute the bit-width allocation of a method,
depends on two parameters: 1) if the method adds a few
fine-tuning epochs at the end of bit-width allocation, 2) if the
proxy that it used needs additional statistics, for example the
layer-wise error over a few training images, to formulate the
optimization problem.

The computational overhead of our method arises from
the following: 1) the MLP training and, 2) the Monte Carlo
sampling and creation of the custom dataset T . For all the
experiments, we use a 2-layer MLP with 200 neurons in the
hidden layer. As far as MLP training overhead is concerned,
we observe that one training epoch requires a forward and
backward pass of MLP over the samples of T . VGG16,
ResNet50 and GoogLeNet have 16, 50 and 22 layers, respec-
tively, and a training epoch requires a forward and back-
ward pass over the 1.2 million training images of ImageNet.
As the MLP size is significantly smaller than the size of
VGG16/ResNet50/GoogLeNet and T is substantially smaller
than the 1.2 million training images of ImageNet; the compu-
tational overhead for the MLP training is minimal compared
to one training epoch of VGG16/ResNet50/GoogLeNet.

Regarding the computational overhead due to sample
collection for the custom dataset T , we observe that this
process requires S ∗N forward passes on VGG16/ResNet50/
GoogLeNet, where S is the number of training samples
of T and N is the number of training images used for
the KL-divergence computation. No backward pass on
VGG16/ResNet50/GoogLeNet is required. This computa-
tional overhead is significantly smaller than a training epoch
for VGG16/ResNet50/GoogLeNet, because the number of
forward passes (S ∗N) is smaller than the number of forward

TABLE 2. Comparison of the computational overhead of PTQ methods.

passes on the entire ImageNet, and no backward pass is
required. Therefore, our method has minimal computational
overhead (ρ = 0.0016x) compared to a training epoch of
VGG16/ResNet50/ GoogLeNet on ImageNet.

We compare our computational overhead with other PTQ
work [9]–[11], [17], [20]. We do not compare the computa-
tional overhead with works belonging to QAT methods [3],
[17]–[22], as all the PTQ work, including ours, starts with
a pretrained full precision network. Thus, the QAT meth-
ods will have higher computation overhead and it is not a
fair comparison. Table 2 summarizes the comparison results.
We observe that among the PTQ methods, our work adds
the lowest computation overhead. In Table 2, we have not
included the comparison with [7]. This is because it was
non-trivial to compute the FLOPs for this work. However,
this method requires the computation of dataset-dependent
terms whose calculations needs 6 hours for the ResNet50 net-
work, as stated in their paper [7]. One training epoch for
ResNet50 requires 55 minutes under the same underlying
hardware, which translates to a ρ = 6.54x. Thus, [7] is more
time-consuming and computationally intensive than one
training epoch and therefore more computationally intense
compared to our method as well.

V. CONCLUSION AND FUTURE WORK
In this article, we proposed a novel simple-yet-effective bit-
width allocation method for network compression that uses
an MLP model. We create a custom dataset consisting of
pairs of bit-width configurations and KL-divergence to train
an MLP model. For a desired KL-divergence, which is a
proxy for network size, the MLPmodel predicts the bit-width
configuration that the network should be quantized with. The
proposedmethod has little computational overhead compared
to other state-of-the-art techniques and achieves up to 6x,
4x, 4x compression on VGG16, ResNet50, and GoogLeNet
respectively with no accuracy degradation compared to the
original pretrained full precision network.

Today, there is a trend to move computation from the cloud
to the edge. Sensor systems embedded in different devices
are an example of such an application [37]–[39]. The edge
devices, however, do not have the computational resources
that are available on the cloud. To deploy a neural model on
the edge it should be compressed to achieve energy efficiency.
Our proposal can be used as a low-cost inference method for
deploying neural models on edge devices.Moreover, note that
in this article our proposal is evaluated on the image classi-
fication task. However, this could be applied to any model
that performs a supervised task. Evaluating our proposed

135066 VOLUME 9, 2021

E. Soufleri, K. Roy: Network Compression via Mixed Precision Quantization Using MLP

methodology on other machine learning tasks would be an
interesting direction for exploration in the future.

REFERENCES
[1] T. O’Shea and J. Hoydis, ‘‘An introduction to deep learning for the physical

layer,’’ IEEE Trans. Cogn. Commun. Netw., vol. 3, no. 4, pp. 563–575,
Dec. 2017.

[2] G. Aceto, D. Ciuonzo, A. Montieri, and A. Pescapé, ‘‘Mobile encrypted
traffic classification using deep learning: Experimental evaluation, lessons
learned, and challenges,’’ IEEE Trans. Netw. ServiceManag., vol. 16, no. 2,
pp. 445–458, Feb. 2019.

[3] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi, ‘‘XNOR-Net: Ima-
geNet classification using binary convolutional neural networks,’’ in Proc.
Eur. Conf. Comput. Vis. Cham, Switzerland: Springer, 2016, pp. 525–542.

[4] M. Courbariaux, Y. Bengio, and J. P. David, ‘‘BinaryConnect: Training
deep neural networks with binary weights during propagations,’’ in Proc.
Adv. Neural Inf. Process. Syst., vol. 28, 2015, pp. 3123–3131.

[5] S. Zhou, Y. Wu, Z. Ni, X. Zhou, H. Wen, and Y. Zou, ‘‘DoReFa-
Net: Training low bitwidth convolutional neural networks with low
bitwidth gradients,’’ 2016, arXiv:1606.06160. [Online]. Available:
http://arxiv.org/abs/1606.06160

[6] C. Sakr, Y. Kim, and N. Shanbhag, ‘‘Analytical guarantees on numerical
precision of deep neural networks,’’ in Proc. Int. Conf. Mach. Learn., 2017,
pp. 3007–3016.

[7] Y. Zhou, S.-M.Moosavi-Dezfooli, N.-M. Cheung, and P. Frossard, ‘‘Adap-
tive quantization for deep neural network,’’ in Proc. AAAI Conf. Artif.
Intell., vol. 32, 2018, pp. 1–9.

[8] W. Zhe, J. Lin, V. Chandrasekhar, and B. Girod, ‘‘Optimizing the bit alloca-
tion for compression of weights and activations of deep neural networks,’’
in Proc. IEEE Int. Conf. Image Process. (ICIP), Sep. 2019, pp. 3826–3830.

[9] F. Tung and G. Mori, ‘‘CLIP-Q: Deep network compression learning by
in-parallel pruning-quantization,’’ in Proc. IEEE/CVF Conf. Comput. Vis.
Pattern Recognit., Jun. 2018, pp. 7873–7882.

[10] Z. Liu, X. Zhang, S. Wang, S. Ma, and W. Gao, ‘‘Evolutionary quantiza-
tion of neural networks with mixed-precision,’’ in Proc. IEEE Int. Conf.
Acoust., Speech Signal Process. (ICASSP), Jun. 2021, pp. 2785–2789.

[11] Y. Yuan, C. Chen, X. Hu, and S. Peng, ‘‘EvoQ: Mixed precision quanti-
zation of DNNs via sensitivity guided evolutionary search,’’ in Proc. Int.
Joint Conf. Neural Netw. (IJCNN), Jul. 2020, pp. 1–8.

[12] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, ‘‘ImageNet:
A large-scale hierarchical image database,’’ in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit., Jun. 2009, pp. 248–255.

[13] K. Simonyan and A. Zisserman, ‘‘Very deep convolutional networks for
large-scale image recognition,’’ 2014, arXiv:1409.1556. [Online]. Avail-
able: http://arxiv.org/abs/1409.1556

[14] K. He, X. Zhang, S. Ren, and J. Sun, ‘‘Deep residual learning for image
recognition,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jun. 2016, pp. 770–778.

[15] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, ‘‘Densely
connected convolutional networks,’’ in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit. (CVPR), Jul. 2017, pp. 4700–4708.

[16] M. Nagel, M. Fournarakis, R. A. Amjad, Y. Bondarenko, M. van Baalen,
and T. Blankevoort, ‘‘Awhite paper on neural network quantization,’’ 2021,
arXiv:2106.08295. [Online]. Available: http://arxiv.org/abs/2106.08295

[17] B. Jacob, S. Kligys, B. Chen, M. Zhu, M. Tang, A. Howard, H. Adam,
and D. Kalenichenko, ‘‘Quantization and training of neural networks
for efficient integer-arithmetic-only inference,’’ in Proc. IEEE/CVF Conf.
Comput. Vis. Pattern Recognit., Jun. 2018, pp. 2704–2713.

[18] J. Faraone, N. Fraser, M. Blott, and P. H. W. Leong, ‘‘SYQ: Learn-
ing symmetric quantization for efficient deep neural networks,’’ in
Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., Jun. 2018,
pp. 4300–4309.

[19] A. Zhou, A. Yao, Y. Guo, L. Xu, and Y. Chen, ‘‘Incremental network
quantization: Towards lossless CNNs with low-precision weights,’’ 2017,
arXiv:1702.03044. [Online]. Available: http://arxiv.org/abs/1702.03044

[20] C. Leng, Z. Dou, H. Li, S. Zhu, and R. Jin, ‘‘Extremely low bit neural
network: Squeeze the last bit out with ADMM,’’ in Proc. AAAI Conf. Artif.
Intell., vol. 32, 2018, pp. 1–8.

[21] F. Li, B. Zhang, and B. Liu, ‘‘Ternary weight networks,’’ 2016,
arXiv:1605.04711. [Online]. Available: http://arxiv.org/abs/1605.04711

[22] N. Mellempudi, A. Kundu, D. Mudigere, D. Das, B. Kaul, and
P. Dubey, ‘‘Ternary neural networkswith fine-grained quantization,’’ 2017,
arXiv:1705.01462. [Online]. Available: http://arxiv.org/abs/1705.01462

[23] B. Martinez, J. Yang, A. Bulat, and G. Tzimiropoulos, ‘‘Train-
ing binary neural networks with real-to-binary convolutions,’’ 2020,
arXiv:2003.11535. [Online]. Available: http://arxiv.org/abs/2003.11535

[24] Y. Cai, Z. Yao, Z. Dong, A. Gholami, M. W. Mahoney, and
K. Keutzer, ‘‘ZeroQ: A novel zero shot quantization framework,’’ in Proc.
IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2020,
pp. 13169–13178.

[25] D. Lin, S. Talathi, and S. Annapureddy, ‘‘Fixed point quantization of
deep convolutional networks,’’ in Proc. Int. Conf. Mach. Learn., 2016,
pp. 2849–2858.

[26] K. Wang, Z. Liu, Y. Lin, J. Lin, and S. Han, ‘‘HAQ: Hardware-aware
automated quantization with mixed precision,’’ in Proc. IEEE/CVF Conf.
Comput. Vis. Pattern Recognit. (CVPR), Jun. 2019, pp. 8612–8620.

[27] S. Han, H. Mao, and W. J. Dally, ‘‘Deep compression: Com-
pressing deep neural networks with pruning, trained quantization
and Huffman coding,’’ 2015, arXiv:1510.00149. [Online]. Available:
http://arxiv.org/abs/1510.00149

[28] B. Hassibi, D. G. Stork, and G. J. Wolff, ‘‘Optimal brain surgeon and gen-
eral network pruning,’’ in Proc. IEEE Int. Conf. Neural Netw., Mar. 1993,
pp. 293–299.

[29] H. Li, A. Kadav, I. Durdanovic, H. Samet, and H. P. Graf, ‘‘Pruning filters
for efficient ConvNets,’’ 2016, arXiv:1608.08710. [Online]. Available:
http://arxiv.org/abs/1608.08710

[30] I. Garg, P. Panda, and K. Roy, ‘‘A low effort approach to structured CNN
design using PCA,’’ IEEE Access, vol. 8, pp. 1347–1360, 2020.

[31] S. Roy, P. Panda, G. Srinivasan, and A. Raghunathan, ‘‘Pruning filters
while training for efficiently optimizing deep learning networks,’’ in Proc.
Int. Joint Conf. Neural Netw. (IJCNN), Jul. 2020, pp. 1–7.

[32] S. Kullback and R. A. Leibler, ‘‘On information and sufficiency,’’ Ann.
Math. Statist., vol. 22, no. 1, pp. 79–86, 1951.

[33] A. Paszke et al., ‘‘PyTorch: An imperative style, high-performance deep
learning library,’’ Adv. Neural Inf. Process. Syst., vol. 32, pp. 8026–8037,
2019.

[34] A. Gholami, S. Kim, Z. Dong, Z. Yao, M. W. Mahoney, and
K. Keutzer, ‘‘A survey of quantization methods for efficient neu-
ral network inference,’’ 2021, arXiv:2103.13630. [Online]. Available:
http://arxiv.org/abs/2103.13630

[35] M. Raghu, B. Poole, J. Kleinberg, S. Ganguli, and J. Sohl-Dickstein, ‘‘On
the expressive power of deep neural networks,’’ in Proc. Int. Conf. Mach.
Learn., 2017, pp. 2847–2854.

[36] A. Ankit, I. E. Hajj, S. R. Chalamalasetti, S. Agarwal, M. Marinella,
M. Foltin, J. P. Strachan, D. Milojicic, W.-M. Hwu, and K. Roy, ‘‘PAN-
THER: A programmable architecture for neural network training har-
nessing energy-efficient ReRAM,’’ IEEE Trans. Comput., vol. 69, no. 8,
pp. 1128–1142, Aug. 2020.

[37] H. Darvishi, D. Ciuonzo, E. R. Eide, and P. S. Rossi, ‘‘Sensor-fault
detection, isolation and accommodation for digital twins via modular data-
driven architecture,’’ IEEE Sensors J., vol. 21, no. 4, pp. 4827–4838,
Feb. 2021.

[38] Z. Zhou, X. Chen, E. Li, L. Zeng, K. Luo, and J. Zhang, ‘‘Edge intelligence:
Paving the last mile of artificial intelligence with edge computing,’’ Proc.
IEEE, vol. 107, no. 8, pp. 1738–1762, Aug. 2019.

[39] Z. Chang, S. Liu, X. Xiong, Z. Cai, and G. Tu, ‘‘A survey of recent
advances in edge-computing-powered artificial intelligence of things,’’
IEEE Internet Things J., vol. 8, no. 18, pp. 13849–13875, Sep. 2021.

EFSTATHIA SOUFLERI (Graduate Student
Member, IEEE) received the bachelor’s degree
from the Department of Mathematics, National
and Kapodistrian University of Athens, Greece,
in 2016, and the master’s degree (Hons.) in com-
puter science from the University of Thessaly,
Greece, in 2017. She is currently pursuing the
Ph.D. degree in electrical and computer engineer-
ing with Purdue University, West Lafayette, IN,
USA, under the guidance of Prof. Kaushik Roy.

She is also a Research Assistant with the Nanoelectronics Research
Laboratory (NRL). Her primary research interests include the field of neural
network compression and neuro-inspired algorithms for efficient learning.
She was awarded a scholarship from the Greek National Foundation for
academic excellence during her studies.

VOLUME 9, 2021 135067

E. Soufleri, K. Roy: Network Compression via Mixed Precision Quantization Using MLP

KAUSHIK ROY (Fellow, IEEE) received the
B.Tech. degree in electronics and electrical com-
munications engineering from IIT Kharagpur,
Kharagpur, India, and the Ph.D. degree from the
Department of Electrical and Computer Engineer-
ing, University of Illinois at Urbana–Champaign,
in 1990.

He was with the Semiconductor Process and
Design Center, Texas Instruments, Dallas, where
he worked on FPGA architecture development and

low-power circuit design. He joined the Faculty of Electrical and Com-
puter Engineering, Purdue University, West Lafayette, IN, USA, in 1993,
where he is currently working as Edward G. Tiedemann, Jr. Distinguished
Professor. He was working as Purdue University Faculty Scholar, from
1998 to 2003. He was a Research Visionary Board Member of Motorola
Labs, in 2002, and held a position of M. Gandhi Distinguished Visiting
Faculty with IIT Bombay and the Global Foundries Visiting Chair with
the National University of Singapore. He is also the Director of the Center
for Brain-Inspired Computing (C-BRIC) funded by SRC/DARPA. He has
published more than 700 articles in refereed journals and conferences, holds
25 patents, and supervised 85 Ph.D. dissertations, and has coauthored two
books Low Power CMOS VLSI Design (John Wiley & McGraw Hill). His
research interests include neuromorphic and emerging computing models,
neuro-mimetic devices, spintronics, device-circuit algorithm co-design for
nano-scale silicon, non-silicon technologies, and low-power electronics.
He received the National Science Foundation Career Development Award,
in 1995, the IBM Faculty Partnership Award, the ATT/Lucent Foundation
Award, the 2005 SRC Technical Excellence Award, the SRC Inventors

Award, Purdue College of Engineering Research Excellence Award, Hum-
boldt Research Award, in 2010, the 2010 IEEE Circuits and Systems Society
Technical Achievement Award (Charles Desoer Award), the Distinguished
Alumnus Award from IIT Kharagpur, Fulbright-Nehru Distinguished Chair,
the DoD Vannevar Bush Faculty Fellow, from 2014 to 2019, Semiconductor
Research Corporation Aristotle Award, in 2015, the 2020 Arden Bement,
Jr. Award, the Highest Research Award given by Purdue University in
pure and applied science and engineering, and the Best Paper Awards at
1997 International Test Conference, the IEEE 2000 International Sympo-
sium on Quality of IC Design, the 2003 IEEE Latin American Test Work-
shop, the 2003 IEEE Nano, the 2004 IEEE International Conference on
Computer Design, the 2006 IEEE/ACM International Symposium on Low
Power Electronics and Design, and the 2005 IEEE Circuits and System
Society Outstanding Young Author Award (Chris Kim), the 2006 IEEE
TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS Best Paper
Award, the 2012 ACM/IEEE International Symposium on Low Power Elec-
tronics and Design Best Paper Award, and the 2013 IEEE TRANSACTIONS

ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS Best Paper Award.
He was a Guest Editor for Special Issue on Low-Power VLSI in IEEE
Design and Test, in 1994, the IEEE TRANSACTIONS ON VERY LARGE SCALE

INTEGRATION (VLSI) SYSTEMS, in June 2000, the IEE Proceedings–Computers
and Digital Techniques, in July 2002, and the IEEE JOURNAL ON EMERGING

AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS, in 2011. He has been in
the Editorial Board of IEEE Design and Test, the IEEE TRANSACTIONS

ON CIRCUITS AND SYSTEMS, the IEEE TRANSACTIONS ON VERY LARGE SCALE

INTEGRATION (VLSI) SYSTEMS, and the IEEE TRANSACTIONS ON ELECTRON

DEVICES.

135068 VOLUME 9, 2021

